Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Expr Purif ; 219: 106483, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38609025

RESUMEN

Mussel foot proteins (Mfps) possess unique binding properties to various surfaces due to the presence of L-3,4-dihydroxyphenylalanine (DOPA). Mytilus edulis foot protein-3 (Mefp-3) is one of several proteins in the byssal adhesive plaque. Its localization at the plaque-substrate interface approved that Mefp-3 plays a key role in adhesion. Therefore, the protein is suitable for the development of innovative bio-based binders. However, recombinant Mfp-3s are mainly purified from inclusion bodies under denaturing conditions. Here, we describe a robust and reproducible protocol for obtaining soluble and tag-free Mefp-3 using the SUMO-fusion technology. Additionally, a microbial tyrosinase from Verrucomicrobium spinosum was used for the in vitro hydroxylation of peptide-bound tyrosines in Mefp-3 for the first time. The highly hydroxylated Mefp-3, confirmed by MALDI-TOF-MS, exhibited excellent adhesive properties comparable to a commercial glue. These results demonstrate a concerted and simplified high yield production process for recombinant soluble and tag-free Mfp3-based proteins with on demand DOPA modification.


Asunto(s)
Dihidroxifenilalanina , Mytilus edulis , Animales , Dihidroxifenilalanina/química , Dihidroxifenilalanina/metabolismo , Mytilus edulis/genética , Mytilus edulis/química , Mytilus edulis/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Verrucomicrobia/genética , Verrucomicrobia/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/química , Proteínas/genética , Proteínas/química , Proteínas/aislamiento & purificación , Hidroxilación , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Macromol Biosci ; 23(11): e2300203, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37441796

RESUMEN

Elastin is an essential extracellular matrix protein that enables tissues and organs such as arteries, lungs, and skin, which undergo continuous deformation, to stretch and recoil. Here, an approach to fabricating artificial elastin with close-to-native molecular and mechanical characteristics is described. Recombinantly produced tropoelastin are polymerized through coacervation and allysine-mediated cross-linking induced by pyrroloquinoline quinone (PQQ). A technique that allows the recovery and repeated use of PQQ for protein cross-linking by covalent attachment to magnetic Sepharose beads is developed. The produced material closely resembles natural elastin in its molecular, biochemical, and mechanical properties, enabled by the occurrence of the cross-linking amino acids desmosine, isodesmosine, and merodesmosine. It possesses elevated resistance against tryptic proteolysis, and its Young's modulus ranging between 1 and 2 MPa is similar to that of natural elastin. The approach described herein enables the engineering of mechanically resilient, elastin-like materials for biomedical applications.


Asunto(s)
Elastina , Tropoelastina , Elastina/química , Tropoelastina/química , Aminoácidos , Proteolisis
3.
Biomater Adv ; 142: 213166, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36306555

RESUMEN

Chronic skin wounds place a high burden on patients and health care systems. The use of angiogenic and mitogenic growth factors can facilitate the healing but growth factors are quickly inactivated by the wound environment if added exogenously. Here, free-standing multilayer films (FSF) are fabricated from chitosan and alginate as opposing polyelectrolytes in an alternating manner using layer-by-layer technique. One hundred bilayers form an about 450 µm thick, detachable free-standing film that is subsequently crosslinked by either ethyl (dimethylaminopropyl) carbodiimide combined with N-hydroxysuccinimide (E-FSF) or genipin (G-FSF). The characterization of swelling, oxygen permeability and crosslinking density shows reduced swelling and oxygen permeability for both crosslinked films compared to non-crosslinked films (N-FSF). Loading of fibroblast growth factor 2 (FGF2) into the films results in a sustained release from crosslinked FSF in comparison to non-crosslinked FSF. Biocompatibility studies in vitro with human dermal fibroblasts cultured underneath the films demonstrate increased cell growth and cell migration for all films with and without FGF2. Especially G-FSF loaded with FGF2 greatly increases cell proliferation and migration. In vivo biocompatibility studies by subcutaneous implantation in mice show that E-FSF causes an inflammatory tissue response that is absent in the case of G-FSF. N-FSF also represents a biocompatible film but shows early degradation. All FSF possess antibacterial properties against gram+ and gram- bacteria demonstrated by an agar diffusion disc assay. In summary, FSF made of alginate and chitosan crosslinked with genipin can act as a reservoir for the sustained release of FGF2, possessing high biocompatibility in vitro and in vivo. Moreover, G-FSF promotes growth and migration of human dermal fibroblasts and has antibacterial properties, which makes it an interesting candidate for bioactive wound.


Asunto(s)
Quitosano , Humanos , Ratones , Animales , Factor 2 de Crecimiento de Fibroblastos , Preparaciones de Acción Retardada , Vendajes/microbiología , Alginatos/farmacología , Antibacterianos/farmacología , Oxígeno
4.
J Biotechnol ; 346: 1-10, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35038459

RESUMEN

Erythropoietin (EPO) is a glycoprotein hormone that has been used to treat anemia in patients with chronic kidney disease and in cancer patients who are receiving chemotherapy. Here, we investigated the accessibility of the glutamine (Gln, Q) residues of recombinant human erythropoietin (rHuEPO) towards a thermoresistant variant microbial transglutaminase (mTGase), TG16 with the aim of developing novel rHuEPO conjugates that may potentially enhance its biological efficacy. As a model bioconjugation, we studied the reactivity of rHuEPO towards TG16 with a low molar mass amine group containing substrate, monodansyl cadaverine (MDC). The reactions were carried out at a Tm of 54.3 °C, the transition temperature of rHuEPO. Characterization by SDS-PAGE and mass spectrometry confirmed the conjugates formation. Then, we examined the conjugation of rHuEPO with a biodegradable and biocompatible polyester, poly(D-sorbitol adipate) (PDSA). To achieve this, PDSA was enzymatically synthesized using lipase B from Candida antartica (CAL-B), chemically modified with side chains having free primary amine (NH2) groups that can be acyl acceptor substrate of TG16, thoroughly characterized by 1H NMR spectroscopy, and then applied for the TG16-mediated conjugation reaction with rHuEPO. rHuEPO conjugates generated by this approach were identified by SDS-PAGE proving that the amine-grafted PDSA is accepted as a substrate for TG16. The successful conjugation was further verified by the detection of high molar mass fluorescent bands after labelling of amine-grafted PDSA with rhodamine B-isothiocyanate. Overall, this enzymatic procedure is considered as an effective approach to prepare biodegradable rHuEPO-polymer conjugates even in the presence of N- and O-glycans.


Asunto(s)
Anemia , Eritropoyetina , Anemia/tratamiento farmacológico , Humanos , Poliésteres , Proteínas Recombinantes/uso terapéutico , Transglutaminasas
5.
Chembiochem ; 23(6): e202100480, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-34979058

RESUMEN

4-Hydroxyphenylacetate 3-hydroxylase (4HPA3H), a flavin-dependent monooxygenase from E. coli that catalyzes the hydroxylation of monophenols to catechols, was modified by rational redesign to convert also more bulky substrates, especially phenolic natural products like phenylpropanoids, flavones or coumarins. Selected amino acid positions in the binding pocket of 4HPA3H were exchanged with residues from the homologous protein from Pseudomonas aeruginosa, yielding variants with improved conversion of spacious substrates such as the flavonoid naringenin or the alkaloid mimetic 2-hydroxycarbazole. Reactions were followed by an adapted Fe(III)-catechol chromogenic assay selective for the products. Especially substitution of the residue Y301 facilitated modulation of substrate specificity: introduction of nonaromatic but hydrophobic (iso)leucine resulted in the preference of the substrate ferulic acid (having a guaiacyl (guajacyl) moiety, part of the vanilloid motif) over unsubstituted monophenols. The in vivo (whole-cell biocatalysts) and in vitro (three-enzyme cascade) transformations of substrates by 4HPA3H and its optimized variants was strictly regiospecific and proceeded without generation of byproducts.


Asunto(s)
Oxigenasas de Función Mixta , Fenoles , Bacterias/metabolismo , Dinitrocresoles , Escherichia coli/metabolismo , Compuestos Férricos , Flavinas/metabolismo , Hidroxilación , Cinética , Oxigenasas de Función Mixta/metabolismo , Fenoles/química
6.
Int J Mol Sci ; 22(9)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063237

RESUMEN

Muscle carnitine palmitoyltransferase II (CPT II) deficiency is associated with various mutations in CPT2 gene. In the present study, the impact of the two CPT II variants P50H and Y479F were characterized in terms of stability and activity in vitro in comparison to wildtype (WT) and the well investigated variant S113L. While the initial enzyme activity of all variants showed wild-type-like behavior, the activity half-lives of the variants at different temperatures were severely reduced. This finding was validated by the investigation of thermostability of the enzymes using nano differential scanning fluorimetry (nanoDSF). Further, it was studied whether the protein stabilizing diphosphatidylglycerol cardiolipin (CL) has an effect on the variants. CL indeed had a positive effect on the stability. This effect was strongest for WT and least pronounced for variant P50H. Additionally, CL improved the catalytic efficiency for CPT II WT and the investigated variants by twofold when carnitine was the varied substrate due to a decrease in KM. However, there was no influence detected for the variation of substrate palmitoyl-CoA. The functional consequences of the stabilization by CL in vivo remain open.


Asunto(s)
Cardiolipinas/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Músculos/metabolismo , Carnitina , Carnitina O-Palmitoiltransferasa/deficiencia , Humanos , Cinética , Errores Innatos del Metabolismo Lipídico , Errores Innatos del Metabolismo , Mutación
7.
J Biotechnol ; 322: 54-65, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32653637

RESUMEN

A wide range of glycoproteins can be recombinantly expressed in aglycosylated forms in bacterial and cell-free production systems. To investigate the effect of glycosylation of these proteins on receptor binding, stability, efficacy as drugs, pharmacodynamics and pharmacokinetics, an efficient glycosylation platform is required. Here, we present a cell-free synthetic platform for the in vitro N-glycosylation of peptides mimicking the endoplasmic reticulum (ER) glycosylation machinery of eukaryotes. The one-pot, two compartment multi-enzyme cascade consisting of eight recombinant enzymes including the three Leloir glycosyltransferases, Alg1, Alg2 and Alg11, expressed in E. coli and S. cerevisiae, respectively, has been engineered to produce the core lipid-linked (LL) oligosaccharide mannopentaose-di-(N-acetylglucosamine) (LL-Man5). Pythanol (C20H42O), a readily available alcohol consisting of regular isoprenoid units, was utilized as the lipid anchor. As part of the cascade, GDP-mannose was de novo produced from the inexpensive substrates ADP, polyphosphate and mannose. To prevent enzyme inhibition, the nucleotide sugar cascade and the glycosyltransferase were segregated into two compartments by a cellulose ester membrane with 3.5 kDa cut-off allowing for the effective diffusion of GDP-mannose across compartments. Finally, as a proof-of-principle, pythanyl-linked Man5 and the single-subunit oligosaccharyltransferase Trypanosoma brucei STT3A expressed in Sf9 insect cells were used to in vitro N-glycosylate a synthetic peptide of ten amino acids bearing the eukaryotic consensus motif N-X-S/T.


Asunto(s)
Enzimas , Glicopéptidos , Lipopolisacáridos/metabolismo , Biología Sintética/métodos , Animales , Biocatálisis , Sistema Libre de Células/enzimología , Sistema Libre de Células/metabolismo , Disacáridos/química , Disacáridos/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Enzimas/genética , Enzimas/metabolismo , Glicopéptidos/química , Glicopéptidos/metabolismo , Glicosilación , Lipopolisacáridos/química , Células Sf9
8.
J Pharm Sci ; 109(2): 981-991, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31682828

RESUMEN

Protein-polymer conjugates have been used as therapeutics because they exhibit frequently higher stability, prolonged in vivo half-life, and lower immunogenicity compared with native proteins. The first part of this report describes the enzymatic synthesis of poly(glycerol adipate) (PGA(M)) by transesterification between glycerol and dimethyl adipate using lipase B from Candida antarctica. PGA(M) is a hydrophilic, biodegradable but water insoluble polyester. By acylation, PGA(M) is modified with 6-(Fmoc-amino)hexanoic acid and with hydrophilic poly(ethylene glycol) side chains (mPEG12) rendering the polymer highly water soluble. This is followed by the removal of protecting groups, fluorenylmethyloxycarbonyl, to generate polyester with primary amine groups, namely PGA(M)-g-NH2-g-mPEG12. 1H NMR spectroscopy, FTIR spectroscopy, and gel permeation chromatography have been used to determine the chemical structure and polydispersity index of PGA(M) before and after modification. In the second part, we discuss the microbial transglutaminase-mediated conjugation of the model protein dimethylcasein with PGA(M)-g-NH2-g-mPEG12 under mild reaction conditions. SDS-PAGE proves the protein-polyester conjugation.


Asunto(s)
Aminas , Poliésteres , Basidiomycota , Caseínas , Transglutaminasas
9.
Methods Enzymol ; 627: 57-97, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31630748

RESUMEN

Enzymatic polymerization is an environmentally benign process for the synthesis of biodegradable and biocompatible polymers. The regioselectivity of lipase B from Candida Antarctica (CAL-B) produces linear functional polyesters without protection-deprotection steps. In this work, two different methods for the enzymatic synthesis of functional polyesters based on renewable resources, as, e.g., glycerol, using CAL-B are outlined. Poly(glycerol adipate) was synthesized by enzymatic transesterification between glycerol and divinyl adipate or dimethyl adipate. Methods are also reported to graft poly(glycerol adipate) with different amounts of hydrophobic side chains (lauric, stearic, behenic, and oleic acids) and hydrophilic poly(ethylene glycol) side chains, respectively. The hydrophilicity or lipophilicity of grafted polyesters is well controlled by changing the degree of grafting of hydrophilic and hydrophobic side chains. The multiple grafted polyesters are characterized by NMR spectroscopy, differential scanning calorimetry, gel permeation chromatography, and X-ray diffraction. Furthermore, the self-assembly of the graft copolymers in water and their use as steric stabilizers for cubosomes are discussed. For this purpose mainly dynamic light scattering and small angle X-ray scattering have been employed.


Asunto(s)
Adipatos/metabolismo , Biocatálisis , Glicerol/metabolismo , Poliésteres/metabolismo , Rastreo Diferencial de Calorimetría , Cromatografía en Gel , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Poliésteres/síntesis química , Polietilenglicoles , Polimerizacion , Difracción de Rayos X
10.
J Biotechnol ; 283: 120-129, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30044949

RESUMEN

In spite of huge endeavors in cell line engineering to produce glycoproteins with desired and uniform glycoforms, it is still not possible in vivo. Alternatively, in vitro glycoengineering can be used for the modification of glycans. However, in vitro glycoengineering relies on expensive nucleotide sugars, such as uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) which serves as GlcNAc donor for the synthesis of various glycans. In this work, we present a systematic study for the cell-free de novo synthesis and regeneration of UDP-GlcNAc from polyphosphate, UMP and GlcNAc by a cascade of five enzymes (N-acetylhexosamine kinase (NahK), Glc-1P uridyltransferase (GalU), uridine monophosphate kinase (URA6), polyphosphate kinase (PPK3), and inorganic diphosphatase (PmPpA). All enzymes were expressed in E. coli BL21 Gold (DE3) and purified using immobilized metal affinity chromatography (IMAC). Results from one-pot experiments demonstrate the successful production of UDP-GlcNAc with a yield approaching 100%. The highest volumetric productivity of the cascade was about 0.81 g L-1  h-1 of UDP-GlcNAc. A simple model based on mass action kinetics was sufficient to capture the dynamic behavior of the multienzyme pathway. Moreover, a design equation based on metabolic control analysis was established to investigate the effect of enzyme concentration on the UDP-GlcNAc flux and to demonstrate that the flux of UDP-GlcNAc can be controlled by means of the enzyme concentrations. The effect of temperature on the UDP-GlcNAc flux followed an Arrhenius equation and the optimal co-factor concentration (Mg2+) for high UDP-GlcNAc synthesis rates depended on the working temperature. In conclusion, the study covers the entire engineering process of a multienzyme cascade, i.e. pathway design, enzyme expression, enzyme purification, reaction kinetics and investigation of the influence of basic parameters (temperature, co-factor concentration, enzyme concentration) on the synthesis rate. Thus, the study lays the foundation for future cascade optimization, preparative scale UDP-GlcNAc synthesis and for in situ coupling of the network with UDP-GlcNAc transferases to efficiently regenerate UDP-GlcNAc. Hence, this study provides a further step towards cost-effective in vitro glycoengineering of antibodies and other glycosylated proteins.


Asunto(s)
Sistema Libre de Células/metabolismo , Enzimas/metabolismo , Uridina Difosfato N-Acetilglucosamina/biosíntesis , Vías Biosintéticas , Enzimas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Cinética , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Temperatura
11.
Curr Biol ; 28(7): 1095-1100.e3, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29551410

RESUMEN

The female sex in honeybees (Apis spp.) comprises a reproductive queen and a sterile worker caste. Nurse bees feed all larvae progressively with a caste-specific food jelly until the prepupal stage. Only those larvae that are exclusively fed a large amount of royal jelly (RJ) develop into queens [1]. RJ is a composite secretion of two specialized head glands: the mandibular glands, which produce mainly fatty acids [2], and the hypopharyngeal glands, which contribute proteins, primarily belonging to the major royal jelly protein (MRJP) family [3]. Past research on RJ has focused on its nutritional function and overlooked its central role with regard to the orientation of the larva in the royal brood cell. Whereas workers are reared in the regular horizontal cells of the comb, the queen cells are specifically built outside of the normal comb area to accommodate for the larger queen [4, 5]. These cells hang freely along the bottom of the comb and are vertically oriented, opening downward [6]. Queen larvae are attached by their RJ diet to the cell ceiling. Thus, the physical properties of RJ are central to successful retention of larvae in the cell. Here, we show that the main protein of RJ (MRJP1) polymerizes in complex with another protein, apisimin, into long fibrous structures that build the basis for the high viscosity of RJ to hold queen larvae on the RJ surface.


Asunto(s)
Abejas/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Gravitación , Proteínas de Insectos/metabolismo , Reproducción , Conducta Social , Animales , Abejas/fisiología , Ácidos Grasos/química , Femenino , Larva , Viscosidad
12.
Biotechnol Bioeng ; 115(1): 192-205, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28922469

RESUMEN

Glycosylation of proteins is a key function of the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell-cell adhesion, blood-group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate-guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1-domain polyphosphate kinase 2 (1D-Ppk2) expressed in E. coli for the cell-free production and regeneration of GDP-mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP-mannose is produced at various conditions, that is pH 7-8, temperature 25-35°C and co-factor concentrations of 5-20 mM MgCl2 . The maximum reaction rate of GDP-mannose achieved was 2.7 µM/min at 30°C and 10 mM MgCl2 producing 566 nmol GDP-mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane-deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER-associated lipid-linked oligosaccharide (LLO) assembly. Thereby, in a one-pot reaction, phytanyl-PP-(GlcNAc)2 -Man1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl-PP-(GlcNAc)2 -Man1 can serve as a substrate for the synthesis of LLO for the cell-free in vitro glycosylation of proteins. A high-performance anion exchange chromatography method with UV and conductivity detection (HPAEC-UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established kinetic model enabled the optimization of the GDP-mannose regenerating cascade and can further be used to study coupling of the GDP-mannose cascade with glycosyltransferases. Overall, the study envisages a first step towards the development of a platform for the cell-free production of LLOs as precursors for in vitro glycoengineering of proteins.


Asunto(s)
Enzimas/metabolismo , Escherichia coli/genética , Guanosina Difosfato Manosa/metabolismo , Lipopolisacáridos/metabolismo , Proteínas Recombinantes/metabolismo , Coenzimas/metabolismo , Enzimas/genética , Enzimas/aislamiento & purificación , Escherichia coli/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Cloruro de Magnesio/metabolismo , Manosa/metabolismo , Polifosfatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Temperatura
13.
Biochimie ; 146: 73-78, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29196110

RESUMEN

Neprilysin is also known as skin fibroblast-derived elastase, and its up-regulation during aging is associated with impairments of the elastic fiber network, loss of skin elasticity and wrinkle formation. However, information on its elastase activity is still limited. The aim of this study was to investigate the degradation of fibrillar skin elastin by neprilysin and the influence of the donor's age on the degradation process using mass spectrometry and bioinformatics approaches. The results showed that cleavage by neprilysin is dependent on previous damage of elastin. While neprilysin does not cleave young and intact skin elastin well, it degrades elastin fibers from older donors, which may further promote aging processes. With regards to the cleavage behavior of neprilysin, a strong preference for Gly at P1 was found, while Gly, Ala and Val were well accepted at P1' upon cleavage of tropoelastin and skin elastin. The results of the study indicate that the progressive release of bioactive elastin peptides by neprilysin upon skin aging may enhance local tissue damage and accelerate extracellular matrix aging processes.


Asunto(s)
Elastina/metabolismo , Neprilisina/metabolismo , Proteolisis , Piel/metabolismo , Anciano , Secuencia de Aminoácidos , Niño , Elastina/química , Humanos , Masculino , Simulación del Acoplamiento Molecular , Conformación Proteica
14.
Int J Artif Organs ; 40(4): 159-168, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28315501

RESUMEN

OBJECTIVES: Gelatin, a degraded collagen, has been widely used as a scaffolding material in tissue engineering applications. In this work, we aimed at the development of in situ, cross-linking, cytocompatible hydrogels by the use of transglutaminase as a cross-linker for potential application in the regeneration of tissues. METHODS: Hydrogels were prepared from gelatin of different concentrations and bloom degree (175 (G175) or 300 (G300) bloom gelatin) and cross-linked with various amounts of microbial transglutaminase (mTG) at 37°C. Mechanical properties and cross-linking degree were studied by rheology and swelling experiments. Four hydrogels with different stiffness were selected for studies with embedded human adipose-derived stem cells (hASCs). RESULTS: Hydrogels were obtained with storage modulus (G') values between 11 (±1) Pa and 1,800 (±200) Pa with gelation times between 80 (±6) and 450 (±36) seconds. G300 cross-linked gelatin hydrogels displayed higher gel stiffness, lower swelling ratio and gelled more rapidly compared to the hydrogels prepared from G175. Stiffer hydrogels (50 and 200 Pa) showed greater ability to support the proliferation of hASCs than softer ones (11 and 30 Pa). The highest cell proliferation was observed with a hydrogel of 200 Pa modulus. CONCLUSIONS: Overall, transglutaminase cross-linked gelatin hydrogels might be suitable as injectable hydrogels for the engineering of musculoskeletal and other types of connective tissues.


Asunto(s)
Gelatina/química , Hidrogeles/química , Ingeniería de Tejidos/métodos , Transglutaminasas/química , Materiales Biocompatibles/síntesis química , Proliferación Celular , Reactivos de Enlaces Cruzados/química , Humanos , Ensayo de Materiales , Regeneración , Células Madre/citología
15.
Int J Mol Sci ; 17(10)2016 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-27735843

RESUMEN

Spider dragline is used by many members of the Araneae family not only as a proteinogenic safety thread but also for web construction. Spider dragline has been shown to possess high tensile strength in combination with elastic behavior. This high tensile strength can be attributed to the presence of antiparallel ß-sheets within the thread; these antiparallel ß-sheets are why the protein is classified as a silk. Due to the properties of spider silk and its technical and medical uses, including its use as a suture material and as a scaffold for tissue regeneration, spider dragline is a focus of the biotechnology industry. The production of sufficient amounts of spider silk is challenging, as it is difficult to produce large quantities of fibers because of the cannibalistic behavior of spiders and their large spatial requirements. In recent years, the heterologous expression of genes coding for spider silk analogs in various hosts, including plants such as Nicotiana tabacum, has been established. We developed a simple and scalable method for the purification of a recombinant spider silk protein elastin-like peptide fusion protein (Q-/K-MaSp1-100× ELP) after heterologous production in tobacco leaves involving heat and acetone precipitation. Further purification was performed using centrifugal Inverse Transition Cycling (cITC). Up to 400 mg of highly pure spider silk protein derivatives can be isolated from six kilograms of tobacco leaves, which is the highest amount of silk protein derivatives purified from plants thus far.


Asunto(s)
Nicotiana/metabolismo , Seda/metabolismo , Arañas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Fibroínas/genética , Fibroínas/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray
16.
Nature ; 537(7621): E10-2, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27652566
17.
Chembiochem ; 16(8): 1169-74, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25940638

RESUMEN

Transglutaminases (EC 2.3.2.13) form an enzyme family that catalyzes the formation of isopeptide bonds between the γ-carboxamide group of glutamine and the ε-amine group of lysine residues of peptides and proteins. Other primary amines can be accepted in place of lysine. Because of their important physiological and pathophysiological functions, transglutaminases have been studied for 60 years. However, the substrate preferences of this enzyme class remain largely elusive. In this study, we used focused combinatorial libraries of 400 peptides to investigate the influence of the amino acids adjacent to the glutamine and lysine residues on the catalysis of isopeptide bond formation by microbial transglutaminase. Using the peptide microarray technology we found a strong positive influence of hydrophobic and basic amino acids, especially arginine, tyrosine, and leucine. Several tripeptide substrates were synthesized, and enzymatic kinetic parameters were determined both by microarray analysis and in solution.


Asunto(s)
Análisis por Matrices de Proteínas/métodos , Transglutaminasas/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Celulosa/química , Membranas Artificiales , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Espectrometría de Fluorescencia , Streptomyces/enzimología , Transglutaminasas/química
18.
Int J Pharm ; 486(1-2): 52-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25819344

RESUMEN

Solid microneedles (MN) are a promising tool for dermal drug delivery. Particular focus lies on the field of vaccination due to pain-free, safe, hygienic and patient compliant antigen deposition. Diverse coating techniques and formulations have been developed to preserve vaccine activity and to enable targeted drug deposition in the skin. Process and long-term storage stability of coated MN, however, have not yet been studied in detail. Hence, a feasibility study was conducted determining the appropriate needle length (300 µm) for local intraepidermal protein delivery. Moreover, a protein-stabilizing coating formulation was developed. Coating of the MN resulted in protein concentrations between 10 and 23 µg, 90% of the bioactivity of the model protein asparaginase was maintained for 3 months. Skin experiments verified the intraepidermal deposition of 68.0 ± 11.7% of the coated model protein after single application. Slightly increased interleukin 8 levels right after MN insertion indicated minor skin irritation due to the mechanical piercing stress. Thus, specifically highlighting protein stabilization during storage, we demonstrated that selective intraepidermal deposition of proteins or peptides' using solid MN is a feasible approach.


Asunto(s)
Antígenos/administración & dosificación , Asparaginasa/administración & dosificación , Albúmina Sérica Bovina/administración & dosificación , Animales , Antígenos/química , Asparaginasa/química , Estudios de Factibilidad , Humanos , Técnicas In Vitro , Inyecciones Intradérmicas , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Microinyecciones , Agujas , Albúmina Sérica Bovina/química , Piel/metabolismo , Porcinos
19.
Plant Biotechnol J ; 12(2): 265-75, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24237483

RESUMEN

In the last two decades it was shown that plants have a great potential for production of specific heterologous proteins. But high cost and inefficient downstream processing are a main technical bottleneck for the broader use of plant-based production technology especially for protein-based products, for technical use as fibres or biodegradable plastics and also for medical applications. High-performance fibres from recombinant spider silks are, therefore, a prominent example. Spiders developed rather different silk materials that are based on proteins. These spider silks show excellent properties in terms of elasticity and toughness. Natural spider silk proteins have a very high molecular weight, and it is precisely this property which is thought to give them their strength. Transgenic plants were generated to produce ELPylated recombinant spider silk derivatives. These fusion proteins were purified by Inverse Transition Cycling (ITC) and enzymatically multimerized with transglutaminase in vitro. Layers produced by casting monomers and multimers were characterized using atomic force microscopy (AFM) and AFM-based nanoindentation. The layered multimers formed by mixing lysine- and glutamine-tagged monomers were associated with the highest elastic penetration modulus.


Asunto(s)
Fibroínas/biosíntesis , Nicotiana/metabolismo , Seda/biosíntesis , Arañas/metabolismo , Transglutaminasas/metabolismo , Animales , Fibroínas/química , Fibroínas/aislamiento & purificación , Microscopía de Fuerza Atómica , Agricultura Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Multimerización de Proteína , Proteínas Recombinantes de Fusión , Seda/aislamiento & purificación , Nicotiana/genética , Transglutaminasas/genética
20.
Amino Acids ; 42(2-3): 997-1006, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21912863

RESUMEN

In order to produce recombinant microbial transglutaminase (rMTG) which is free of the activating protease, dispase was used to activate the pro-rMTG followed by immobilized metal affinity chromatography (IMAC). As shown by MALDI-MS, the dispase does not only cleave the pro-sequence, but unfortunately also cleaves within the C-terminal histidine-tag. Hence, the active rMTG cannot properly bind to the IMAC material. As an alternative, proteinase K was investigated. This protease was successfully applied for the activation of purified pro-rMTG either as free or immobilized enzyme and the free enzyme was also applicable directly in the crude cell extract of E. coli. Thus, it enables a simple two-step activation/purification procedure resulting in protease-free and almost pure transglutaminase preparations. The protocol has been successfully applied to both, wild-type transglutaminase of Streptomyces mobaraensis as well as to the highly active variant S2P. Proteinase K activates the pro-rMTG without unwanted degradation of the histidine-tag. It turned out to be very important to inhibit proteinase K activity, e.g., by PMSF, prior to protein separation by SDS-PAGE.


Asunto(s)
Endopeptidasa K/metabolismo , Endopeptidasas/metabolismo , Histidina/metabolismo , Transglutaminasas/metabolismo , Cromatografía de Afinidad , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Escherichia coli/enzimología , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...